Sunday, April 10, 2016

Matlab: Butterworth_LowPass_Filter

%page=235
%DFT and IDFT


clc;
clear all;
close all;

imageAa = imread('5.jpg');
imageA =rgb2gray(imageAa );

[M N]=size(imageA);


%Display images

subplot(2,2,1);
imshow(imageA);
title('Image A ');


imageA=double(imageA);
%-1 *

for x=1:M
    for y=1:N
        imageA(x,y)=imageA(x,y)*(-1)^(x+y);
    end
end

%Perform 2D FFTs

h=waitbar(0,'Calculating DFT...');
for u=1:M
    for v=1:N
        sum=0.0;
        for x=1:M
            for y=1:N
                sum=sum+double(imageA(x,y))*(exp(-j*2*pi*(u*x/M+v*y/N)));
            end
        end
        F(u,v)=sum;
    end
    waitbar(u/M);
end
close(h);





subplot(2,2,2);
imshow(abs(F),[24 100000])
title('Image A DFT Magnitude');


subplot(2,2,3);
imshow(angle((F)),[-pi pi])
title('Image A DFT Phase');


%Define Filter function h
h=zeros(M,N);
d0=input('Enter the value of D0=');
n=input('Enter the order of n=');
for u=1:M
    for v=1:N
        d=((u-M/2)^2+(v-N/2)^2)^(1/2);
        h(u,v)=1/(1+(d/d0)^(2*n));       
    end
end

%Step 3
for u=1:M
    for v=1:N
        glo(u,v)=F(u,v)*h(u,v);
    end
end


%Calculating IDFT...

h=waitbar(0,'Calculating IDFT...');
for u=1:M
    for v=1:N
        suml=0.0;
        for x=1:M
            for y=1:N
                suml=suml+double(glo(x,y))*(exp(j*2*pi*(u*x/M+v*y/N)));
            end
        end
        f(u,v)=suml/(M*N);
    end
    waitbar(u/M);
end
close(h);




%-1 *
for x=1:M
    for y=1:N
        f(x,y)=f(x,y)*(-1)^(x+y);
    end
end



%image show
subplot(2,2,4);
imshow(uint8(f));
title('Image A-IDFT');

Matlab: Butterworth_HighPass_Filter

%page=235
%DFT and IDFT


clc;
clear all;
close all;

imageAa = imread('5.jpg');
imageA =rgb2gray(imageAa );

[M N]=size(imageA);


%Display images

subplot(2,2,1);
imshow(imageA);
title('Image A ');


imageA=double(imageA);
%-1 *

for x=1:M
    for y=1:N
        imageA(x,y)=imageA(x,y)*(-1)^(x+y);
    end
end

%Perform 2D FFTs

h=waitbar(0,'Calculating DFT...');
for u=1:M
    for v=1:N
        sum=0.0;
        for x=1:M
            for y=1:N
                sum=sum+double(imageA(x,y))*(exp(-j*2*pi*(u*x/M+v*y/N)));
            end
        end
        F(u,v)=sum;
    end
    waitbar(u/M);
end
close(h);





subplot(2,2,2);
imshow(abs(F),[24 100000])
title('Image A DFT Magnitude');


subplot(2,2,3);
imshow(angle((F)),[-pi pi])
title('Image A DFT Phase');


%Define Filter function h
h=zeros(M,N);
d0=input('Enter the value of D0=');
n=input('Enter the order of n=');
for u=1:M
    for v=1:N
        d=((u-M/2)^2+(v-N/2)^2)^(1/2);
        h(u,v)=1/(1+(d0/d)^(2*n));       
    end
end

%Step 3
for u=1:M
    for v=1:N
        glo(u,v)=F(u,v)*h(u,v);
    end
end


%Calculating IDFT...

h=waitbar(0,'Calculating IDFT...');
for u=1:M
    for v=1:N
        suml=0.0;
        for x=1:M
            for y=1:N
                suml=suml+double(glo(x,y))*(exp(j*2*pi*(u*x/M+v*y/N)));
            end
        end
        f(u,v)=suml/(M*N);
    end
    waitbar(u/M);
end
close(h);




%-1 *
for x=1:M
    for y=1:N
        f(x,y)=f(x,y)*(-1)^(x+y);
    end
end



%image show
subplot(2,2,4);
imshow(uint8(f));
title('Image A-IDFT');

Matlab: image_gaussian_low_pass

%page=235
%image_gaussian_low_pass.m


clc;
clear all;
close all;

imageAa = imread('6.jpg');
imageA =rgb2gray(imageAa );

[M N]=size(imageA);


%Display images

subplot(4,2,1:2);
imshow(imageA);
title('Image A ');


F=dft_img(imageA);






%Define Filter function h
 t=3;
for kk=0:5:10
   
    h=zeros(M,N);
    %d0=input('Enter the value of D0=');
    d0=kk;
    for u=1:M
        for v=1:N
            d=((u-M/2)^2+(v-N/2)^2)^(1/2);
            h(u,v)=exp(-(d^2/(2*(d0^2))));     
        end
    end
   
    %Filter show
    subplot(4,2,t);
    t=t+1;
    imshow((h));
    title(['Filter H, D0= ',int2str(kk)]);
   
    %multiply
    for u=1:M
        for v=1:N
            outPut_img(u,v)=F(u,v)*h(u,v);
        end
    end

 %Calculating IDFT...

   f=idft_img(outPut_img);


     %image show
    subplot(4,2,t);
    t=t+1;
    imshow(uint8(f));
    title(['Image IDFT D0= ',int2str(kk)]);

end

Matlab: image_gaussian_high_pass

%page=235
%image_gaussian_high_pass


clc;
clear all;
close all;

imageAa = imread('5.jpg');
imageA =rgb2gray(imageAa );

[M N]=size(imageA);


%Display images

subplot(4,2,1:2);
imshow(imageA);
title('Image A ');


F=dft_img(imageA);


%Define Filter function h
 t=3;
for kk=0:2:4
    h=ones(M,N);
    %d0=input('Enter the value of D0=');
    d0=kk;
    for u=1:M
        for v=1:N
            d=((u-M/2)^2+(v-N/2)^2)^(1/2);
            h(u,v)=1-(exp(-(d^2/(2*(d0^2)))) );     
        end
    end
   
    %Filter show
    subplot(4,2,t);
    t=t+1;
    imshow((h));
    title(['Filter H, D0= ',int2str(kk)]);
   
    %multiply
    for u=1:M
        for v=1:N
            outPut_img(u,v)=F(u,v)*h(u,v);
        end
    end


     %Calculating IDFT...

   f=idft_img(outPut_img);



    %image show
    subplot(4,2,t);
    t=t+1;
    imshow(uint8(f));
    title(['Image IDFT D0= ',int2str(kk)]);
end

Matlab: DFT and IDFT image function

%page=235
%DFT and IDFT


clc;
clear all;
close all;

imageAa = imread('6.jpg');
imageA =rgb2gray(imageAa );


%Display images

subplot(2,2,1);
imshow(imageA);
title('Image A ');
[M N]=size(imageA)



shift_F=dft_img(imageA);



subplot(2,2,2);
imshow(abs(shift_F),[24 100000])
title('Image A DFT Magnitude');


subplot(2,2,3);
%imshow(angle((shift_F)),[-pi pi]);
F2 = log(abs(shift_F));
imshow(F2,[-1 5]);
title('Image A DFT Log');


 %Calculating IDFT...

 f=idft_img(shift_F);


%image show
subplot(2,2,4);
imshow(uint8(f));
title('Image A-IDFT');

Matlab: IDFT image function

function [f]=idft_img(shift_F)


[M N]=size(shift_F);


    h=waitbar(0,'Calculating IDFT...');
    for u=0:M-1
        for v=0:N-1
            suml=0.0;
            for x=0:M-1
                for y=0:N-1
                    suml=suml+double(shift_F(x+1,y+1))*(exp(j*2*pi*(u*x/M+v*y/N)));
                end
            end
            f(u+1,v+1)=suml/(M*N);
        end
        waitbar(u/M);
    end
    close(h);




%-1 *
for x=1:M
    for y=1:N
        f(x,y)=f(x,y)*(-1)^(x+y);
    end
end

Matlab: Ideal_Low_Pass_Filter

%page=235
%Ideal_Low_Pass_Filter.m


clc;
clear all;
close all;

imageAa = imread('5.jpg');
imageA =rgb2gray(imageAa );

[M N]=size(imageA);


%Display images

subplot(4,2,1:2);
imshow(imageA);
title('Input Image');



F=dft_img(imageA);



%Define Filter function h
 t=3;
for kk=3:3:9
   
    h=zeros(M,N);
    %d0=input('Enter the value of D0=');
    d0=kk;
    for u=1:M
        for v=1:N
            d=((u-M/2)^2+(v-N/2)^2)^(1/2);
            if(d<=d0)
                h(u,v)=1;
            end
        end
    end
    %Filter show
    subplot(4,2,t);
    t=t+1;
    imshow((h));
    title(['Filter H, D0= ',int2str(kk)]);
   
    %multiply
    for u=1:M
        for v=1:N
            outPut_img(u,v)=F(u,v)*h(u,v);
        end
    end


     %Calculating IDFT...

      f=idft_img(outPut_img);


  
    %image show
    subplot(4,2,t);
    t=t+1;
    imshow(uint8(f));
    title(['Image IDFT D0= ',int2str(kk)]);
end

Matlab: Ideal_High_Pass_Filter

%page=235
%Ideal_High_Pass_Filter.m


clc;
clear all;
close all;

imageAa = imread('5.jpg');
imageA =rgb2gray(imageAa );

[M N]=size(imageA);


%Display images

subplot(4,2,1:2);
imshow(imageA);
title('Image A ');


F=dft_img(imageA);





%Define Filter function h
 t=3;
for kk=0:2:4
    h=ones(M,N);
    %d0=input('Enter the value of D0=');
    d0=kk;
    for u=1:M
        for v=1:N
            d=((u-M/2)^2+(v-N/2)^2)^(1/2);
            if(d<=d0)
                h(u,v)=0;
            end
        end
    end
    %Filter show
    subplot(4,2,t);
    t=t+1;
    imshow((h));
    title(['Filter H, D0= ',int2str(kk)]);
   
    %multiply
    for u=1:M
        for v=1:N
            outPut_img(u,v)=F(u,v)*h(u,v);
        end
    end

 %Calculating IDFT...

    f=idft_img(outPut_img);


     %image show
    subplot(4,2,t);
    t=t+1;
    imshow(uint8(f));
    title(['Image IDFT D0= ',int2str(kk)]);
end

Matlab: DFT image function

function [F]=dft_img(imageA)


[M N]=size(imageA);


imageA=double(imageA);

%-1 *
for x=1:M
    for y=1:N
        imageA(x,y)=imageA(x,y)*(-1)^(x+y);
    end
end

%Perform 2D FFTs

h=waitbar(0,'Calculating DFT...');
for u=0:M-1
    for v=0:N-1
        sum=0.0;
        for x=0:M-1
            for y=0:N-1
                sum=sum+double(imageA(x+1,y+1))*(exp(-j*2*pi*(u*x/M+v*y/N)));
            end
        end
        F(u+1,v+1)=sum;
    end
    waitbar(u/M);
end
close(h);

Matlab: Butterworth_LowPass_Filter

%page=235
%Butterworth_LowPass_Filter.m


clc;
clear all;
close all;

imageAa = imread('5.jpg');
imageA =rgb2gray(imageAa );

[M N]=size(imageA);


%Display images

subplot(4,2,1:2);
imshow(imageA);
title('Image A ');


F=dft_img(imageA);





% subplot(2,2,2);
% imshow(abs(F),[24 100000])
% title('Image A DFT Magnitude');
%
%
% subplot(2,2,3);
% imshow(angle((F)),[-pi pi])
% title('Image A DFT Phase');


%Define Filter function h
t=3;
for kk=3:3:9
   
    h=zeros(M,N);
    %d0=input('Enter the value of D0=');
    %n=input('Enter the order of n=');
    d0=kk;
    n=kk;
   
    for u=1:M
        for v=1:N
            d=((u-M/2)^2+(v-N/2)^2)^(1/2);
            h(u,v)=1/(1+(d/d0)^(2*n));       
        end
    end
    %Filter show
    subplot(4,2,t);
    t=t+1;
    imshow((h));
    title(['Filter H, D0= ',int2str(kk)]);
   
    %multiply
    for u=1:M
        for v=1:N
            outPut_img(u,v)=F(u,v)*h(u,v);
        end
    end


     %Calculating IDFT...

    f=idft_img(outPut_img);



    %image show
    subplot(4,2,t);
    t=t+1;
    imshow(uint8(f));
    title(['Image IDFT D0= ',int2str(kk)]);
end

Matlab: Butterworth_HighPass_Filter

%page=235
%Butterworth_HighPass_Filter


clc;
clear all;
close all;

imageAa = imread('5.jpg');
imageA =rgb2gray(imageAa );

[M N]=size(imageA);


%Display images

subplot(4,2,1:2);
imshow(imageA);
title('Image A ');


F=dft_img(imageA);



% subplot(2,2,2);
% imshow(abs(F),[24 100000])
% title('Image A DFT Magnitude');


% subplot(2,2,3);
% imshow(angle((F)),[-pi pi])
% title('Image A DFT Phase');


%Define Filter function h
t=3;
for kk=2:2:6
    h=zeros(M,N);
    %d0=input('Enter the value of D0=');
    %n=input('Enter the order of n=');
    d0=kk;
    n=kk;
    for u=1:M
        for v=1:N
            d=((u-M/2)^2+(v-N/2)^2)^(1/2);
            h(u,v)=1/(1+(d0/d)^(2*n));       
        end
    end
    %Filter show
    subplot(4,2,t);
    t=t+1;
    imshow((h));
    title(['Filter H, D0= ',int2str(kk)]);
    %multiply
    for u=1:M
        for v=1:N
            outPut_img(u,v)=F(u,v)*h(u,v);
        end
    end


%Calculating IDFT...
   f=idft_img(outPut_img);

  
%image show
    subplot(4,2,t);
    t=t+1;
    imshow(uint8(f));
    title(['Image IDFT D0= ',int2str(kk)]);
end

Matlab: Gradient Using manually convolution 2d

%page=167
%Gradient Using manually convolution 2d


clc;
clear all;
close all;

A=imread('8.jpg');
A=rgb2gray(A);
A=imread('rice.tif');


subplot(2,2,1);
imshow(A);
title('Original Image');

mx=[-1 -2 -1; 0 0 0; 1 2 1];

my=[-1 0 1; -2 0 2; -1 0 1];


%H = conv2(double(A),double(mx));
%V = conv2(double(A),double(my));

H=conv_img2(double(mx),double(A)) ;
%H=corr_img(double(mx),double(A)) ;

V=conv_img2(double(my),double(A));


subplot(2,2,2);
imshow(uint8(H));
title('Horizontal delp/delx');

subplot(2,2,3);
imshow(uint8(V));
title('Vertical delp/dely');


subplot(2,2,4);
imshow(uint8(sqrt(H.^2 + V.^2)));
%imshow(uint8(H));
title('Gradient Image');




%---------function

%convolution of image
function [Output] = img_conv2( mask,Input)

v=flipdim(mask,2);
w = flipdim(v,1);

[x y] = size(Input);
[m n]=size(w);

k1=(m-1)/2;
k2=(n-1)/2;
tempInput=padarray(Input,[k1 k2]);

for i = 1 : x
    for j = 1 : y
         aValue = tempInput(i,j)*w(1,1)+tempInput(i,j+1)*w(1,2)+tempInput(i,j+2)*w(1,3)+tempInput(i+1,j)*w(2,1)+tempInput(i+1,j+1)*w(2,2)+tempInput(i+1,j+2)*w(2,3)+                  tempInput(i+2,j)*w(3,1)+tempInput(i+2,j+1)*w(3,2)+tempInput(i+2,j+2)*w(3,3);
         Output(i,j)= aValue;
    end
end

Matlab: Gradient Sobel operation

%page=167
%Gradient Sobel operation


clc;
clear all;
close all;

A=imread('8.jpg');
A=rgb2gray(A);

subplot(1,2,1);

imshow(A);
title('Original Image');

mx=[-1 -2 -1; 0 0 0; 1 2 1];
my=[-1 0 1; -2 0 2; -1 0 1];

[r,c]=size(A);

C=double(A);


for i=1:r-2
    for j=1:c-2
 
        %X -direction
        Gx1=mx(1,1)*C(i,j)+mx(1,2)*C(i,j+1)+mx(1,3)*C(i,j+2);
        Gx2=mx(2,1)*C(i+1,j)+mx(2,2)*C(i+1,j+1)+mx(2,3)*C(i+1,j+2);
        Gx3=mx(3,1)*C(i+2,j)+mx(3,2)*C(i+2,j+1)+mx(3,3)*C(i+2,j+2);
        Gx=Gx1+Gx2+Gx3;
       
        %Y -direction
        Gy1=my(1,1)*C(i,j)+my(1,2)*C(i,j+1)+my(1,3)*C(i,j+2);
        Gy2=my(2,1)*C(i+1,j)+my(2,2)*C(i+1,j+1)+my(2,3)*C(i+2,j+2);
        Gy3=my(3,1)*C(i+2,j)+my(3,2)*C(i+2,j+1)+my(3,3)*C(i+2,j+2);
        Gy=Gy1+Gy2+Gy3;
        B(i,j)=uint8(sqrt(Gx.^2+Gy.^2));
    end
end


subplot(1,2,2);
imshow(B);
title('Gradient Image');

Matlab: Gradient Robert cross difference

%page=167
%Gradient Robert cross difference


clc;
clear all;
close all;

A=imread('8.jpg');
A=rgb2gray(A);

subplot(1,2,1);

imshow(A);
title('Original Image');

operators_x=[-1 0; 0 1];

x_pad=padarray(operators_x,[1 1]);


operators_y=[0 -1; 1 0];

y_pad=padarray(operators_y,[1 1]);


% A =
%
%      1     2
%      3     4
% B = padarray(A,[1 1]);
% B =
%
%      0     0     0     0
%      0     1     2     0
%      0     3     4     0
%      0     0     0     0
[r,c]=size(A);

C=double(A);


for i=1:r-2
    for j=1:c-2
 
        %X -direction
      
        Gx=x_pad(3,3)*C(i+2,j+2)+x_pad(2,2)*C(i+1,j+1);
       
        %Y -direction
        Gy=y_pad(3,2)*C(i+2,j+1)+y_pad(2,3)*C(i+1,j+2);
       
        B(i,j)=uint8(sqrt(Gx.^2+Gy.^2));
    end
end


subplot(1,2,2);
imshow(B);
title('Gradient Image');

Matlab: Gradient Using Built in convolution 2d

%page=167
%Using Built in convolution 2d


clc;
clear all;
close all;

A=imread('8.jpg');
A=rgb2gray(A);
A=imread('rice.tif');
subplot(1,2,1);

imshow(A);
title('Original Image');

mx=[-1 -2 -1; 0 0 0; 1 2 1];
my=[-1 0 1; -2 0 2; -1 0 1];


H = conv2(double(A),double(mx));
V = conv2(double(A),double(my));


subplot(1,2,2);
imshow(uint8(sqrt(H.^2 + V.^2)));
title('Gradient Image');




Matlab: Unsharp masking, HighBoost Filtering Image, De emphasize Image

%Unsharp masking with k=1
%HighBoost Filtering Image with k=5 (k>1)
%De emphasize Image with k=-5 (k<1 br="">
clear all;
close all;
A=imread('8.jpg');

%img=imread('moon.tif');
A=rgb2gray(A);

subplot(2,3,1);
imshow(A);
title('Original Image');



%to blur image

%L=[1 2 1;2 4 2;1 2 1];

L=(1/9)*[1 1 1;1 1 1;1 1 1];

blur_img=uint8(conv_img2(L,A));
%end of blur image



subplot(2,3,2);
imshow(blur_img);
title('Blurred Image');


Gmask_img=A-blur_img;
subplot(2,3,3);
imshow(Gmask_img);
title('G mask Image');

k=1;
unsharp_img=A+k*Gmask_img;
subplot(2,3,4);
imshow(unsharp_img);
title('Unsharp Image');



k=5;
highboost_img=A+k*Gmask_img;
subplot(2,3,5);
imshow(highboost_img);
title('HighBoost Filtering Image');



k=-5;
de_emphsize_img=A+k*Gmask_img;
subplot(2,3,6);
imshow(de_emphsize_img);
title('De-emphasizes  Image');


%---function---------
%convolution of image
function [Output] = img_conv2( mask,Input)

v=flipdim(mask,2);
w = flipdim(v,1);

[x y] = size(Input);
[m n]=size(w);

k1=(m-1)/2;
k2=(n-1)/2;
tempInput=padarray(Input,[k1 k2]);

for i = 1 : x
    for j = 1 : y
         aValue = tempInput(i,j)*w(1,1)+tempInput(i,j+1)*w(1,2)+tempInput(i,j+2)*w(1,3)+tempInput(i+1,j)*w(2,1)+tempInput(i+1,j+1)*w(2,2)+tempInput(i+1,j+2)*w(2,3)+                  tempInput(i+2,j)*w(3,1)+tempInput(i+2,j+1)*w(3,2)+tempInput(i+2,j+2)*w(3,3);
         Output(i,j)= aValue;
    end
end



%---function---------

%correlation function of image

function [out_img]=conv_img(mask,input_img)

img=input_img;

%totals=sum(L(:));
total=9;


[r c]=size(img);


out_img=img;
 sum=0;
for i=2:(r-1)
    for j=2:(c-1)
        sum=0;
    
        s=1;
        t=1;
        for m=(i-1):(i+1)
            for n=(j-1):(j+1)
                sum=sum+double( ((img(m,n))*mask(s,t))  );
                t=t+1;
            end
            t=1;
            s=s+1;
        end
    %    sum=sum/total;     
    out_img(i,j)=uint8 (sum);
    end
end



Matlab: convolution of image

%convolution of image
function [Output] = img_conv2( mask,Input)

v=flipdim(mask,2);
w = flipdim(v,1);

[x y] = size(Input);
[m n]=size(w);


k1=(m-1)/2;
k2=(n-1)/2;
tempInput=padarray(Input,[k1 k2]);

for i = 1 : x
    for j = 1 : y
         aValue = tempInput(i,j)*w(1,1)+tempInput(i,j+1)*w(1,2)+tempInput(i,j+2)*w(1,3)+tempInput(i+1,j)*w(2,1)+tempInput(i+1,j+1)*w(2,2)+tempInput(i+1,j+2)*w(2,3)+ tempInput(i+2,j)*w(3,1)+tempInput(i+2,j+1)*w(3,2)+tempInput(i+2,j+2)*w(3,3);
         Output(i,j)= aValue;
    end
end

Matlab: correlation function of image function

%correlation function of image

function [out_img]=corr_img(mask,input_img)

img=input_img;

%totals=sum(L(:));
total=9;


[r c]=size(img);


out_img=img;
 sum=0;
for i=2:(r-1)
    for j=2:(c-1)
        sum=0;
    
        s=1;
        t=1;
        for m=(i-1):(i+1)
            for n=(j-1):(j+1)
                sum=sum+double( ((img(m,n))*mask(s,t))  );
                t=t+1;
            end
            t=1;
            s=s+1;
        end
    %    sum=sum/total;     
    out_img(i,j)=uint8 (sum);
    end
end

Matlab: Smoothing spatial filter using manual convulation V2

%Smoothing spatial filter using manual convulation
%page=145

clear all;
close all;
img=imread('8.jpg');

%img=imread('moon.tif');
img=rgb2gray(img);

subplot(1,2,1);
imshow(img);
title('Original Image');

%L=[1 2 1;2 4 2;1 2 1];
L=(1/9)*[1 1 1;1 1 1;1 1 1];

out_img=uint8(conv_img(L,img));

subplot(1,2,2);
imshow(out_img);
title('Smoothing Image');


%------function--------
%convolution of image
function [Output] = img_conv2( mask,Input)

v=flipdim(mask,2);
w = flipdim(v,1);

[x y] = size(Input);
[m n]=size(w);


k1=(m-1)/2;
k2=(n-1)/2;
tempInput=padarray(Input,[k1 k2]);

for i = 1 : x
    for j = 1 : y
         aValue = tempInput(i,j)*w(1,1)+tempInput(i,j+1)*w(1,2)+tempInput(i,j+2)*w(1,3)+tempInput(i+1,j)*w(2,1)+tempInput(i+1,j+1)*w(2,2)+tempInput(i+1,j+2)*w(2,3)+ tempInput(i+2,j)*w(3,1)+tempInput(i+2,j+1)*w(3,2)+tempInput(i+2,j+2)*w(3,3);
         Output(i,j)= aValue;
    end
end

Matlab: Smoothing spatial filter using manual convulation V1

%Smoothing spatial filter using manual convulation
%page=145

clear all;
close all;
img=imread('8.jpg');

%img=imread('moon.tif');
img=rgb2gray(img);

subplot(1,2,1);
imshow(img);
title('Original Image');

%L=[1 2 1;2 4 2;1 2 1];
L=(1/9)*[1 1 1;1 1 1;1 1 1];

out_img=uint8(conv_img(L,img));

subplot(1,2,2);
imshow(out_img);
title('Smoothing Image');

%----------------Function----------
%convolution of image
function [Output] = img_conv2( mask,Input)
      Output=conv2(mask,Input);